Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 9(4): 4496-507, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25835284

RESUMO

We investigate if the functionality of spin crossover molecules is preserved when they are assembled into an interfacial device structure. Specifically, we prepare and investigate gold nanoparticle arrays, into which room-temperature spin crossover molecules are introduced, more precisely, [Fe(AcS-BPP)2](ClO4)2, where AcS-BPP = (S)-(4-{[2,6-(dipyrazol-1-yl)pyrid-4-yl]ethynyl}phenyl)ethanethioate (in short, Fe(S-BPP)2). We combine three complementary experiments to characterize the molecule-nanoparticle structure in detail. Temperature-dependent Raman measurements provide direct evidence for a (partial) spin transition in the Fe(S-BPP)2-based arrays. This transition is qualitatively confirmed by magnetization measurements. Finally, charge transport measurements on the Fe(S-BPP)2-gold nanoparticle devices reveal a minimum in device resistance versus temperature, R(T), curves around 260-290 K. This is in contrast to similar networks containing passive molecules only that show monotonically decreasing R(T) characteristics. Backed by density functional theory calculations on single molecular conductance values for both spin states, we propose to relate the resistance minimum in R(T) to a spin transition under the hypothesis that (1) the molecular resistance of the high spin state is larger than that of the low spin state and (2) transport in the array is governed by a percolation model.

2.
Beilstein J Nanotechnol ; 5: 1664-1674, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25383278

RESUMO

We prepare and investigate two-dimensional (2D) single-layer arrays and multilayered networks of gold nanoparticles derivatized with conjugated hetero-aromatic molecules, i.e., S-(4-{[2,6-bipyrazol-1-yl)pyrid-4-yl]ethynyl}phenyl)thiolate (herein S-BPP), as capping ligands. These structures are fabricated by a combination of self-assembly and microcontact printing techniques, and are characterized by electron microscopy, UV-visible spectroscopy and Raman spectroscopy. Selective binding of the S-BPP molecules to the gold nanoparticles through Au-S bonds is found, with no evidence for the formation of N-Au bonds between the pyridine or pyrazole groups of BPP and the gold surface. Subtle, but significant shifts with temperature of specific Raman S-BPP modes are also observed. We attribute these to dynamic changes in the orientation and/or increased mobility of the molecules on the gold nanoparticle facets. As for their conductance, the temperature-dependence for S-BPP networks differs significantly from standard alkanethiol-capped networks, especially above 220 K. Relating the latter two observations, we propose that dynamic changes in the molecular layers effectively lower the molecular tunnel barrier for BPP-based arrays at higher temperatures.

3.
J Phys Chem B ; 112(33): 10142-52, 2008 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-18651762

RESUMO

Colloidal platelets of hydrotalcite, a layered double hydroxide, have been prepared by coprecipitation at pH 11-12 of magnesium nitrate and aluminum nitrate at two different magnesium to aluminum ratios. Changing the temperature and ionic strength during hydrothermal treatment, the platelets were tailored to different sizes and aspect ratios. Amino-modified polyisobutylene molecules were grafted onto the platelets following a convenient new route involving freeze-drying. Organic dispersions in toluene were prepared of the particles with the largest size and highest aspect ratio. The colloidal dispersions prepared in this way showed isotropic-nematic phase transitions above a limiting concentration in a matter of days. The number density at the transition and the width of the biphasic region were determined and compared to theory. The orientation of the platelets in nematic droplets (tactoids) and at the isotropic-nematic interface were analyzed by polarization microscopy. It was observed that sedimentation induces a nematic layer in samples that are below the limiting concentration for isotropic-nematic phase separation. No nematic phase was observed in the initial aqueous suspensions of the ungrafted particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...